Himpunanpenyelesaian pertidaksamaan √(3−x)3} C. {x∣2/3. SD Himpunan penyelesaian pertidaksamaan √(3−x)3} C. {x∣2/3
MatematikaBILANGAN Kelas 10 SMAPersamaan dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Linear Satu Variabel yang Memuat Nilai MutlakPertidaksamaan Linear Satu Variabel yang Memuat Nilai MutlakPersamaan dan Pertidaksamaan Linear Satu Variabel WajibBILANGANMatematikaRekomendasi video solusi lainnya0222Sisa pembagian suku banyak Px=x^3-3x^2+2x-4 oleh x+2...Sisa pembagian suku banyak Px=x^3-3x^2+2x-4 oleh x+2...0356Tentukan penvelesaian dari pertidaksamaan 1/x - 3>6Tentukan penvelesaian dari pertidaksamaan 1/x - 3>61019Penyelesaian dari pertidaksamaan 1-2 x/akarx^2+4...Penyelesaian dari pertidaksamaan 1-2 x/akarx^2+4...0448Jika fx=x/2+1/2 dan gx=2 x-1/3 , maka ...Jika fx=x/2+1/2 dan gx=2 x-1/3 , maka ...Teks videoUntuk menyelesaikan soal ini kita dapat menggunakan Salah satu sifat dari nilai mutlak jadi kalau kita punya nilai mutlak atau fungsi mutlak Y kurang dari C maka solusi dari pertidaksamaan nilai mutlak ini bisa kita tulis sebagai Y kurang dari C dan lebih dari min c. Nah pada soal ini nilai mutlak Y nya kurang dari 3 jadi solusi dari nilai mutlak nya dapat kita tulis Y kurang dari 3 dan lebih dari min 3 sehingga jawaban yang benar adalah yang a Oke sampai berjumpa di pertanyaan berikutnya
makadaerah hasil yang dimaksud adalah daerah negatif. Dan jika tandanya > atau≥maka daerah hasil yang dimaksud adalah daerah negatif. Himpunan penyelesaian dari pertidaksamaan tersebut dinyatakan dalam bentuk interval. Contoh Soal 3.15. 1. Tentukan himpunan penyelesaian dari pertidaksamaan x2 -5 x -14 ≤ 0, untuk x∈ R. Jawab:
Gambar masing-masing persamaan. 1. Ubah pertidaksamaan menjadi sebuah persamaan. Jika maka Jika maka Di dapatkan dua titik yaitu dan . 2. ; Ubah pertidaksamaan menjadi sebuah persamaan. Jika maka Jika maka Di dapatkan dua titik yaitu dan . 3. Ubah pertidaksamaan menjadi sebuah persamaan, kemudian tentukan beberapa titik yang mewakili untuk digambarkan pada diagram kartesuis, sehingga diperoleh 4. Ubah pertidaksamaan menjadi sebuah persamaan, kemudian tentukan beberapa titik yang mewakili untuk digambarkan pada diagram kartesuis, sehingga diperoleh Lakukan uji titik dan tentukan daerah penyelesaian. Misal titik uji 1. Karena benar bahwa , maka daerah yang memuat titik merupakan daerah penyelesaian dari 2. Karena salah bahwa , maka daerah yang memuat titik bukan merupakan daerah penyelesaian dari 3. Karena benar bahwa , maka daerah yang memuat titik bukan merupakan daerah penyelesaian dari 4. Karena salah bahwa , maka daerah yang memuat titik bukan merupakan daerah penyelesaian dari Daerah himpunan penyelesaian dapat digambarkan sebagai berikut Oleh karena itu, jawaban yang benar adalah A.
Hasiltersebut diperoleh dari definisi logaritma di mana jika y = 2 log 8 maka 2 y = 8 yang dipenuhi ketika nilai y = 3. Himpunan penyelesaian persamaan logaritma pada umumnya hanya memuat satu nilai yang memenuhi. Seperti pada contoh di atas misalnya, nilai yang memenuhi atau himpunan penyelesaian untuk persamaan y = 2 log 8 adalah Hp = {3}.
Rangkuman PertidaksamaanPengertianSifat-sifat PertidaksamaanInterval BilanganDefinitJenis DefinitSifat DefinitJenis Pertidaksamaan13 Part Video Pembelajaran Pertidaksamaan Kelas XIICONTOH SOAL & PEMBAHASANRangkuman PertidaksamaanPengertianPertidaksamaan adalah kalimat matematika terbuka yang menggunakan tanda ketidaksamaan > lebih dari, b atau a = b atau a b dan b > c maka a > cJika a > b maka a + cJika a > b dan c > 0 maka ac > bc dan > Jika a > b dan c b makaam > bm ,untuk a > 0 dan b > 0am b maka an > bnJika a > b makaInterval Bilanganyaitu penyelesaian dari suatu pertidaksamaanDefinitJenis DefinitDefinit Positif Bentuk ax2 + bx + c = 0 dikatakan definit positif jika a > 0 dan D 0 dalam kondisi definit positif, maka penyelesaiannya adalah semua x Î Negatif Bentuk ax2 + bx + c = 0 dikatakan definit negatif jika a 0 ax + b ≤ 0 ax + b ≥ 0 Penyelesaian Pisahkan variabel x diruas tersendiri terpisah dari Kuadrat ax2 + bx + c 0 ax2 + bx + c ≤ 0 ax2 + bx + c ≥ 0 Penyelesaian Jadikan ruas kanan = 0Faktorkan ruas nilai-nilai daerah penyelesaian!Jika yang ditanya > 0 atau maka daerah penyelesaiannya adalah daerah +Jika yang ditanya 0 menjadi bentuk –a a dan a > 0 menjadi bentuk fx afx > gx menjadi bentuk fx+gxfx – gx > 0a 0 menjadi bentuk a 0 maka pertidaksamaan itu dipenuhi oleh…x > 1-2 -2PEMBAHASAN x2 + x – 2 > 0 x + 2x – 1 > 0 x = -2 V x = 1 Dapat dipenuhi jika x 1 1 dan 3 benar Jawaban BSoal UN 1993Himpunan penyelesaian pertidaksamaan x2 – 5x – 6 > 0 untuk x ∈ R adalah….{x -6 6}{xx 6}{xx 3}PEMBAHASAN x2 – 5x – 6 > 0 x – 6x + 1 > 0 x = 6 V x = -1 HP {xx 6} Jawaban CSoal SNMPTN 2011Semua nilai x yang memenuhi ≥ adalah…-2 00 2x -5}PEMBAHASAN x2 – 8x + 15 ≤ 0 x – 5x – 3 ≤ 0 x = 5 V x = 3 HP {x3 ≤ x ≤ 5} Jawaban BSoal SNMPTN 2009Jika a,b ≥ 0 maka pernyataan di bawah ini yang benar adalah …PEMBAHASAN Jawaban ASoal UN 1995Himpunan penyelesaian pertidaksamaan 3x2 – 2x – 8 > untuk x ∈ R adalah….{x x > 2 atau x 2 atau x -4/3 atau x 0 3x + 4x – 2 > 0 x = -4/3 V x = 2 HP {x x > 2 atau x 3}{x-3 ≤ x 3}PEMBAHASAN Jawaban ESoal SNMPTN 2012Semua nilai x yang memenuhi x + 3 x -1 ≥ x – 1 adalah ……….1 ≤ x ≤ 3x ≤ -2 atau x ≥ 13 ≤ x ≤ -1-2 ≥ x atau x ≥ 3-1 ≥ x atau x ≥ 3PEMBAHASAN Jawaban BSoal UN 2002Himpunan penyelesaian pertidaksamaan ≥ 3 adalah …{x 1 ≤ x 2}{x 1 ≤ x ≤ 2}{xx 2 atau x ≤ 1}{xx > 2 atau x 1y 1PEMBAHASAN Jawaban ESoal SBMPTN 2014semua nilai x yang memenuhi ≤ 0 adalah …1/3 1x 1x 2/31/2 1PEMBAHASAN Jawaban CSoal UM UGM 2010Himpunan penyelesian dari ≥ 0{x x ≥ -1}{x x ≥ 4/3{x x ≤ 5/2}{x x ≥ 5/2}{x 4/3 ≤ x ≤ 5/2}PEMBAHASAN Jawaban ESoal SBMPTN 2014Semua nilai x yang memenuhi > 2 adalah….-2 ≤ x 1-3/2 ≤ x ≤ -1x > 2-1 3}PEMBAHASAN Jawaban ASoal SNMPTN 2007Penyelesaian pertidaksamaan x2 – 2 ≤ 2x + 1adalah…-1 – ≤ x ≤ 3-1 – ≤ x ≤ -1 +-1 – ≤ x ≤ -1/2-1 ≤ x ≤ -1 +-1 ≤ x ≤ 3PEMBAHASAN Jawaban ASoal p, q, r, s merupakan bilangan real positif dengan p > q dan r > s. Maka pernyataan di bawah ini yang tepat, kecuali …ps > qrpr > qsp + r > q + spr + qs > ps + qrPEMBAHASAN Dengan ketentuan p > q dan r > s, sebagai berikutps > qr Pembuktian, misalnya 6 > 5 dan 4 > 3 6 . 3 > 5 . 4 salah Pernyataan belum tentu benarpr > qs Pembuktian, misalnya 6 > 5 dan 4 > 3 6 . 4 > 5 . 3 tepat Pembuktian, misalnya 6 > 5 dan 4 > 3 tepatp + r > q + s Pembuktian, misalnya 6 > 5 dan 4 > 3 6 + 4 > 5 + 3 tepatpr + qs > ps + qr Pembuktian, misalnya 6 > 5 dan 4 > 3 6 . 4 + 5 . 3 > 6 . 3 + 5 . 4 = 39 > 38 tepatJawaban ASoal yang tepat jika diketahui m > 4 dan n 5> 3> 2 4 – n 2 Jawaban CSoal 3 15 adalah …x > 6x > – 6x x > 2x > -5PEMBAHASAN 4x – 9 > 15 4x > 15 + 9 4x > 24 x > 6 Jawaban ASoal penyelesaian dari x2 – 11x + 18 9; x ∈ R}{x x > 3 atau x < 6; x ∈ R}PEMBAHASAN Himpunan penyelesaian dari x2 – 11x + 18 < 0Menentukan nilai x, asumsikan sebagai persamaan yaitu x2 – 11x + 18 = 0 x – 2x – 9 = 0 x = 2 dan x = 9 Maka himpunan penyelesaiannya yaitu {x 2 < x < 9; x ∈ R} Jawaban CSoal adalah semua bilangan positif yang memenuhi pertidaksamaan jika …PEMBAHASAN x < 3x2 x < 9x2 x – 9×2 < 0 x1-9x < 0 x = 0 dan x = 1/9 Maka semua bilangan positif x yang memenuhi adalah Jawaban ESoal penyelesaian dari pertidaksamaan -2x2 + 7x – 3 ≥ 0 adalah …{x x ≤ ½ atau x ≤ 3, x ∈ R}{x 3 ≤ x ≤ ½ , x ∈ R}{x x ≤ – ½ dan x ≥ 3, x ∈ R}{x ½ ≤ x ≤ 3, x ∈ R}{x – ½ ≤ x ≤ – 3, x ∈ R}PEMBAHASAN Jika -2x2 + 7x – 3 ≥ 0 Ubah pertidaksamaan tersebut menjadi persamaan sebagai berikut -2x2 + 7x – 3 = 0 -2x + 1x – 3 = 0 x = ½ dan x = 3 Maka himpunan penyelesaian dari pertidaksamaan tersebut yaitu {x ½ ≤ x ≤ 3, x ∈ R} Jawaban DSoal yang setara ekuivalen dengan pertidaksamaan 3x – 7< 15 adalah …-3x < 22-8 < 3x < 228 < 3x < -22-8 + 3x< 228 < 3x < 22PEMBAHASAN 3x – 7< 15 Berlaku a< b ↔ -b < a < bMaka 3x – 7< 15 ⇒ -15 + 7 < 3x < 15 + 7 ⇒ -8 < 3x < 22 Jawaban B
2KRR.